Nov 26, 2024  
2021-2022 UMass Dartmouth Graduate Catalog 
    
2021-2022 UMass Dartmouth Graduate Catalog [Archived Catalog]

Department of Physics


Return to {$returnto_text} Return to: Colleges, Departments, and Programs

Faculty and area of expertise

Fisher, Robert (Graduate Program Director) Professor of Physics (2008), BS 1994 California Institute of Technology, PhD 2002 University of California, Berkeley. Specializations: Fundamental physics of turbulent flows, scientific computing, star formation and supernovae.

Hirshfeld, Alan Professor of Physics (1978), BA 1973 Princeton University, MS 1975, PhD 1978 Yale University. Specializations: Astrophysics, observational astronomy.

Hsu, Jong-Ping Chancellor Professor of Physics (1978), BS 1962 National Taiwan University, MS 1965 National Tsing-Hwa University, PhD 1969 University of Rochester. Specializations: Symmetry principles and gauge field theories.

Kagan, David Lecturer in Physics (2012), BA 2002 Columbia University, PhD 2007 University of Cambridge. Specializations: Theoretical physics, string theory, physics education.

Rajapakse, Renuka Lecturer in Physics (2018), BSc 1999 University of Peradeniya, MS 2005 University of Connecticut, PhD 2011 University of Connecticut. Specializations: Quantum optics, quantum computation, theoretical and computational atomic physics.

O’Rielly, Grant Associate Professor of Physics (2002), BS 1986 University of Melbourne, PhD 1997 University of Melbourne. Specializations: Photonuclear physics at intermediate energies, few-body systems, pion photo productions, fundamental nuclear symmetries.

Wang, Jay (Jianyi) (Chairperson) Professor of Physics (1998), BSc 1983 Lanzhou University, China, PhD 1992 University of Tennessee, Knoxville. Specializations: Theory and simulations of electronic, atomic and optical processes, ion-solids and ion-surface interactions, computational physics.

The Physics Master of Science program is open to full-time as well as part-time students who are planning to pursue careers in physics research or teaching, or in applied areas of industrial research and development. Ranked by the American Institute of Physics as one of the top physics MS programs in the country, our program is designed to advance students’ understanding of the concepts of modern and classical physics as well as their mastery of applying these concepts to solve practical problems.

The Physics Department offers a range of graduate courses in electrodynamics, quantum mechanics, relativity, fluid physics, mathematical physics, computational physics, nuclear physics and astrophysics. The department also offers courses emphasizing research including thesis research as well as independent study courses on special topics. Graduate students are strongly encouraged to participate in ongoing faculty research programs in various areas of physics – atomic physics, quantum optics and quantum computing, nuclear physics, relativity, astrophysics, high-energy and gravitational physics. In addition, research projects in physics education are available for students pursuing a teaching career. Students interested in applied areas of physics or in closely related fields such as mathematics, computer science or electrical and computer engineering can take graduate courses and obtain research projects in those areas as well.

The physics background and expertise acquired by students at UMass Dartmouth has enabled many to continue their studies at premier research universities in the US and abroad. Others have embarked on careers in teaching or in applied areas like nuclear power, communications, materials science, computer or electrical engineering, and computer software.

Careers of our graduates as professional physicists are remarkably broad in scope. The majority of physics students who obtained their MS degree at UMass Dartmouth in recent years have continued their studies at the Ph.D. level at other universities including Ohio State, Purdue, Stony Brook, MIT, Brandeis, Duke, Notre Dame, Columbia, the University of Colorado Boulder, and many other top-ranked institutions. Our graduates are employed at computer software companies, high schools, industrial concerns, military contractors, national laboratories, nuclear power plants and universities. They work in fields as varied as astrophysics, biophysics, gravitational physics, computer programming, electrical engineering, experimental high energy physics, materials science, mathematical statistics, nuclear engineering, atomic and nuclear theory and satellite communications.

Research activities in the Physics Department span a very diverse range within the field, but may be grouped into three main focus areas: computational physics, theoretical physics, and experimental physics. Student participation is highly valued in all of these areas, and opportunities include research assistantships and summer internships along with tuition waivers. Current research efforts in the department are supported by grants from several federal agencies including NSF, DoD, NASA, etc.

Theoretical and computational research is pursued in a number of areas. Atomic, molecular and optical (AMO) physics research focuses on electronic and optical properties of matter in interaction with charged particles, photons and laser pulses, quantum optics, and quantum computing. Electron correlation effects and exotic properties of Rydberg atoms and molecules are areas of current interest. Astrophysics research is focused on the endpoints of stellar evolution – star formation and supernovae, as well as the fundamental physics of turbulent fluids. Research in gravitational physics involves studying the coalescence of binary black holes using perturbation theory and estimating properties of the gravitational waves produced in this process. This research is relevant to the various gravity wave observatories now operating (e.g. LIGO, LISA) that recently detected this radiation for the first time ever from black hole sources. Other areas of faculty interest in theoretical research include studies of the broad view of Lorentz and Poincare invariance and space-time symmetry, space-time transformations for non-inertial frames with limiting 4- dimensional symmetry and field theory in non-inertial frames, and translation gauge symmetry for gravity.

Research in experimental physics at UMass Dartmouth is primarily in the area of nuclear physics. The nuclear physics research currently involves a series of measurements to investigate pion photo production near threshold from the proton and (eventually) the neutron. This project is a collaborative effort involving researchers from the U.S. and Sweden, and will be undertaken using the MAX-lab facility at Lund University in Lund, Sweden.

For further information on these and other research activities, please visit the department web page at www.umassd.edu/engineering/phy/

Admission requirements

Applicants must submit the required application materials to the Graduate Office. Admission to the graduate physics program may be either for the fall or the spring semester. Admission is competitive and requires the completion of an undergraduate degree in physics or a closely related field with a grade point average that attests to the student’s ability for graduate level study. The General Record Examination (GRE) is not required for admission, but the selection of candidates for financial support includes consideration of GRE scores as well as Test of English as a Foreign Language (TOEFL) or the International English Language Testing System (IELTS)  scores for international students whose native language is not English.

Financial assistance

A limited number of teaching and research assistantships are available. They are awarded on a competitive basis. The selection of candidates is based on academic transcripts from the student’s home institution, three letters of recommendation from professors or other senior scientists well acquainted with the qualifications of the candidate, the GRE scores and, where applicable, the TOEFL or IELTS scores. Assistantships are awarded either on a full-time or a partial basis.

Degree requirements

Candidates for the MS degree in physics must complete a minimum of thirty semester hours of coursework. Graduate coursework comprises 500- and 600-level courses, although up to six credits of the total may be taken in advanced undergraduate (400 level) courses.

While the program is designed to meet a variety of professional needs, at least 15 credits of physics core courses are required. The remaining credits will be courses which best serve the student in their research activities and post-graduation career plans. These may be drawn from available graduate lecture courses in physics, PHY 616 Graduate Seminar, research-based courses (such as PHY 680, 685, and 690), or certain 400-level undergraduate Physics courses. Up to 6-credits of course work may be taken outside of the physics department, typically in engineering or science fields, with prior approval of the Physics Graduate Program Director.

The Physics Department offers three MS plans. It is recommended that the entering student consult with a faculty advisor as soon as possible to choose a plan and to project a course sequence.

Plan A: Master of Science with Thesis

The thesis topic may range from research in one of the traditional fields of physics and applied physics to research in physics education such as innovative curricula and laboratories. The latter is of particular interest for physics teachers whose main goal is the improvement of physics instruction and pedagogical techniques in secondary schools. There is no limit on the number of thesis credit hours a student may take; however, no more than 6 thesis credit hours may be used toward the graduation requirement. A written thesis, successful completion of a formal departmental thesis defense, and approval by the student’s thesis committee are all required. The comprehensive examination is waived. The thesis may be written while the student is no longer present on campus, although the student must remain registered in Program Continuation status and will not receive the degree until the thesis is finished. The thesis plan is noted in the student’s record. This plan is strongly recommended to the student, especially those supported on assistantship funding.

Plan B: Master of Science with Research Project

The student may choose a research project in consultation with a faculty advisor in an area of common interest to determine a research topic. Assigned readings and periodic progress reports will be required. A written project report and a formal department presentation are required before graduation. There is no limit on the number of research credit hours a student may take; however, a maximum of only 6 research credit hours may be used toward the graduation requirement. The comprehensive examination is waived. Conversion to the thesis plan may be possible if sufficient grounds for conversion exist, at least one semester prior to graduation. This plan is recommended to students interested in research but not yet committed to the thesis.

Plan C: Master of Science

In order to fulfill the requirements for the award of an MS degree in this plan, the student must pass a written comprehensive examination. The student choosing this plan should successfully complete the comprehensive examination after the first year of study. The comprehensive examination is offered once every year. The examination emphasizes the mastery of topics in undergraduate as well as graduate physics.

Language Requirement

There is no foreign language requirement for US students. International students have to demonstrate their knowledge of English and their ability to follow advanced courses by taking the TOEFL examination prior to applying for admission. The minimum score for admission to the physics graduate program is specified as 533/200/72 (PBT/CBT/IBT) on the TOEFL or BAND 6.0 on the IELTS; for admission with a teaching assistantship, the minimum score is 550/213/79 (PBT/CBT/IBT) on the TOEFL or BAND 6.5 on the IELTS.

Departmental resources and facilities

Observatory with 16” Meade telescope,, several high-performance computer clusters, and access to a range of world-class supercomputers.

Contact

Dr. Robert Fisher
Graduate Program Director
Physics Department
508.910.8353
RFisher1@umassd.edu

Return to {$returnto_text} Return to: Colleges, Departments, and Programs