2015-2016 UMass Dartmouth Undergraduate Catalog [Archived Catalog]
Department of Electrical and Computer Engineering
|
|
Return to: Colleges, Departments, and Programs
Faculty and Fields of Interest
David A Brown engineering and physical acoustics, transduction, underwater acoustics, sonar, communications, navigation, dynamic materials properties characterization
John R Buck acoustic properties of materials, acoustic transducers, animal bioacoustics, information theory, signal processing, signal processing pedagogy, underwater acoustics
Antonio H Costa (chairperson) time-frequency representations, spectral estimation, signal processing
Lance N Fiondella reliability engineering, transportation engineering
Paul J Fortier computer architecture and evaluation, data mining and knowledge discovery, database systems, embedded systems, real-time systems
Paul Gendron statistical signal processing, detection and estimation theory.
Robert C Helgeland circuits, power electronics, electromechanical energy conversion, marine electronic systems
Dayalan P Kasilingam remote sensing, applied electromagnetics, wireless communications, adaptive signal processing
Yifei Li high dynamic range RF / photonic links, integrated photonic frequency mixer, tunable microwave lasers
Hong Liu network security, computer networks, compilers, programming languages
Howard E Michel distributed artificial intelligence, artificial neural networks, distributed computing, sensor networks
Karen L Payton digital signal processing, speech processing, speech acoustics, auditory perception
David Rancour solid state devices, VLSI, quantum mechanics
Philip H Viall computer networks, assembly languages, rehabilitation engineering
Honggang Wang wireless networks and communications, multimedia communications, networks and multimedia security, pattern recognition, embedded systems, biomedical computing
Liudong Xing complex system reliability, fault-tolerant computing, intrusion-tolerant computing, risk assessment
The Department of Electrical and Computer Engineering (ECE) offers undergraduate programs of study leading to a Bachelor of Science degree in either Electrical Engineering or Computer Engineering. Both undergraduate programs are accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org.
At the graduate level, the ECE Department offers programs leading to a Master of Science degree in either Electrical Engineering or Computer Engineering and a Doctor of Philosophy degree in Electrical Engineering with options in Electrical Engineering and Computer Engineering. In addition, the ECE Department offers six graduate certificate programs. For details consult the Graduate Catalog.
Mission Statement
The Department of Electrical and Computer Engineering at the University of Massachusetts Dartmouth provides students with a universally recognized undergraduate and graduate education in electrical and computer engineering, develops new ideas and technologies deployed around the world, and prepares its graduates to be vital contributors to the economic growth of the Commonwealth of Massachusetts, the nation, and beyond.
Vision Statement
The Department of Electrical and Computer Engineering will continue to provide outstanding undergraduate and graduate education driven by excellence in teaching and research.
Computer Engineering
PROGRAM EDUCATIONAL OBJECTIVES (PEOs)
The computer engineering program at the University of Massachusetts Dartmouth provides students with the broad technical education necessary for productive employment in the public or private sector or success in graduate degree programs, and develops in them an understanding of fundamentals and current issues important for lifelong learning.
The PEOs of the computer engineering program at the University of Massachusetts Dartmouth are broad statements that describe the career and professional accomplishments that the program is preparing graduates to achieve. Three to five years after graduation, the Department of Electrical and Computer Engineering expects its graduates in computer engineering to have achieved the following:
I. PROFESSIONAL PRACTICE
Employment in the computer engineering field in various capacities, including product design and development, field engineering, quality control, research and development, manufacturing, consulting, testing, project management, and technical marketing.
II. PROFESSIONAL GROWTH
Continuous career improvement, evidenced by assumption of greater responsibility or leadership, promotion, participation in continuing education or graduate studies, or transition into other technical or professional careers.
III. PROFESSIONAL CONDUCT
Awareness of the social and ethical ramifications of their work.
STUDENT OUTCOMES
The undergraduate program in computer engineering imposes the following expectations on its graduates. Graduates will:
- have an ability to apply knowledge of mathematics.
- have an ability to apply knowledge of basic sciences.
- have an ability to apply knowledge of core computer engineering specialties to solve engineering problems.
- have the ability to create computer programs to solve engineering problems.
- have an ability to develop models and apply them to engineering problems.
- have effective laboratory skills.
- have an ability to identify, formulate and solve engineering problems.
- be able to design a system, component, process or computer program to meet design needs using design principles, techniques and engineering tools.
- have an ability to work as a contributing member of a multidisciplinary team.
- be able to communicate and express ideas coherently, professionally and effectively.
- have an understanding of professional and ethical responsibility.
- have knowledge of contemporary issues and an understanding of the impact of engineering on society.
- understand the need for and have an ability to engage in lifelong learning.
Electrical Engineering
PROGRAM EDUCATIONAL OBJECTIVES (PEOs)
The electrical engineering program at the University of Massachusetts Dartmouth provides students with the broad technical education necessary for productive employment in the public or private sector or success in graduate degree programs, and develops in them an understanding of fundamentals and current issues important for lifelong learning.
The PEOs of the electrical engineering program at the University of Massachusetts Dartmouth are broad statements that describe the career and professional accomplishments that the program is preparing graduates to achieve. Three to five years after graduation, the Department of Electrical and Computer Engineering expects its graduates in electrical engineering to have achieved the following:
I. PROFESSIONAL PRACTICE
Employment in the electrical engineering field in various capacities, including product design and development, field engineering, quality control, research and development, manufacturing, consulting, testing, project management, and technical marketing.
II. PROFESSIONAL GROWTH
Continuous career improvement, evidenced by assumption of greater responsibility or leadership, promotion, participation in continuing education or graduate studies, or transition into other technical or professional careers.
III. PROFESSIONAL CONDUCT
Awareness of the social and ethical ramifications of their work.
STUDENT OUTCOMES
The undergraduate program in electrical engineering imposes the following expectations on its graduates. Graduates will:
- have an ability to apply knowledge of mathematics.
- have an ability to apply knowledge of basic sciences.
- have an ability to apply knowledge of core electrical engineering specialties to solve engineering problems.
- have the ability to create computer programs to solve engineering problems.
- have an ability to develop models and apply them to engineering problems.
- have effective laboratory skills.
- have an ability to identify, formulate and solve engineering problems.
- be able to design a system, component, process or computer program to meet design needs using design principles, techniques and engineering tools.
- have an ability to work as a contributing member of a multidisciplinary team.
- be able to communicate and express ideas coherently, professionally and effectively.
- have an understanding of professional and ethical responsibility.
- have knowledge of contemporary issues and an understanding of the impact of engineering on society.
- understand the need for and have an ability to engage in lifelong learning.
Return to: Colleges, Departments, and Programs
|